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Air flows past a fixed thin body of a general planform, a t  a non-uniform small 
clearance from a plane ground surface. The flow beneath the body is described by 
a linear two-dimensional partial differential equation, in which the clearance appears 
as an input non-constant coefficient. Solutions are required subject t o  separate 
leading-edge and (nonlinear) trailing-edge boundary conditions, at the edge contour 
of the planform. The transition points between leading and trailing edge are not 
necessarily at the lateral extremities of this contour, and are to be determined as part 
of the solution. As an illustration, a solution is obtained for a circular planform with 
an exponentially varying clearance. The general problem is relevant to vehicle 
aerodynamics, especially for racing cars, and some qualitative discussion of the nature 
of the negative-lift ground-effect problem for such vehicles, and of the effect of 
'skirts', is presented here. 

1. Introduction 
Ground effect enhances lift, be i t  positive or negative. Published studies (e.g. 

Strand, Royce & Fujita 1962; Widnall & Barrows 1970; Tuck 1980; Newman 1982) 
emphasize positive angle of attack, and hence positive (away from ground) net force. 
However, the influence of the ground plane in augmenting the toward-ground force 
on wings a t  negative angle of attack can be even greater, and recent applications to  
automobile aerodynamics, especially racing cars (Wise 1979) have illustrated this 
negative-lift phenomenon. 

If one uses a linearized approach, as in Widnall 8z Barrows (1970), in which the 
flow about a body fixed in a uniform stream U is assumed everywhere a small 
perturbation of that stream, there is complete antisymmetry between posifive and 
negative angle of attack. Although such linearized theories are of considerable value, 
and are further discussed here, we are more interested in nonlinear analysis, in which, 
a t  least in the small-gap region between the lower surface of the wing and the ground 
plane, the flow velocity is not close to  that  of the uniform stream. 

The nature of the asymmetry between positive and negative angle of attack is 
illustrated easily by considering properties of such a nonlinear gap flow in the 
high-aspect-ratio case, as studied in Tuck (1981). Then the flow in the gap is 
determined by one-dimensional continuity (i.e. velocity inversely proportional to 
clearance), subject to smooth trailing-edge detachment, which demands freestream 
velocity and pressure at the trailing edge. 

Then, at positive angle of attack, the velocity and pressure can vary between 
stagnation and freestream values under the wing, and the net positive lift is bounded 
above by the product of the velocity head BptF and the area of the planform. This 
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bound would be achieved only in the limit when the trailing edge touches the ground, 
and hence stagnation conditions apply everywhere in the gap. The maximum lift is 
notably independent of the angle of attack, and hence in practice potentially many 
times that achievable without ground effect, which is effectively proportional to the 
(small) angle of attack. 

On the other hand, there is no lower bound on negative lift, according to this simple 
theory. That is, we can cause the pressure to take as great a negative value as we 
please in a one-dimensional channel, by letting the clearance become infinitesimally 
small a t  some station ahead of the trailing edge. The fluid has nowhere else to go, 
and must pass through this tight constriction a t  high speed, and hence at low 
pressure. I n  principle, then, we appear to be able to  generate an arbitrarily large down 
force, a prospect that  has been appreciated and to a large extent realized by Formula 
I racing car designers, in recent years, especially for vehicles fitted with so-called 
‘ skirts ’ . 

I n  practice, the down force is limited by real-fluid and finite-aspect-ratio con- 
siderations, the latter of which concerns us here ; effects of viscosity are considered by 
Tuck & Bentwich (1983). If the wing is of finite span, and has no skirts, the flow in 
general is three- rather than two-dimensional, and the flow in the gap region is two- 
rather than one-dimensional, and few studies have been made of such flows. For the 
linearized problem, Widnall & Barrows (1970) made some computations for semi- 
elliptical planforms. More recently Newman (1982) solved the nonlinear problem in 
the low-aspect-ratio limit. The aim of the present paper is to formulate and discuss 
the nonlinear boundary-value problem for the flow in the gap a t  arbitrary aspect ratio, 
preparing the way for numerical solution of practical problems of this nature. 

An interesting aspect of the work of Newman is that  associated with the effective 
boundary condition a t  the edge contour of the wing planform. One portion of this 
contour, generally in the forward half, is a ‘leading’ edge, while the remainder is a 
‘trailing’ edge, and different boundary conditions apply a t  these two edges. Transition 
between leading and trailing edges is normally thought to occur at the wing tips, i.e. 
a t  the points of maximum span. However, Newman finds that transition occurs 
forward of the wing tip, a t  positive angle of attack. 

We show here that such a phenomenon is not confined to the low-aspect-ratio limit, 
and that a result of Newman’s, namely that transition occurs where the mean (above 
and below the wing) velocity vector is tangent to the edge, applies generally. 
However, we also show that, in the linearized case, transition necessarily occurs a t  
the wing tips. 

In  order to illustrate the nonlinear problem, we give here a semi-numerical solution 
for a wing of circular planform. In  the special case of an exponentially varying 
clearance, it is possible to write down a solution in the form of a Bessel-function 
expansion, and good accuracy is achievable by truncating this series to a small 
number of terms. This solution can act as a test case for computer programs that 
are devised to solve general classes of extreme ground-effect problems. 

2. Derivation of gap-flow boundary-value problems 

determine a velocity potential $ = $(x, y, x )  satisfying Laplace’s equation 
If we assume steady irrotational motion of an  inviscid incompressible fluid, we must 

$zz + $yy + $zz = 0, (2.1) 

everywhere in the flow region, subject to suitable boundary conditions. These are that 
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Leading edge f Trailing edge rT 
FIQURE 1. Sketch of flow situation and coordinate system. 

a uniform stream is recovered at infinity, i.e. 

$ + U x  at cn, ( 2 . 2 )  

$ z = O  on z = O ,  (2.3) 

the plane z = 0 is an impermeable ground, i.e. 

and the body is fixed. If z = h(x, y )  is the lower and z = h+(z, y )  the upper surface 
of the body, this means that 

$z = $xh,+$,h, on z = h, (2.4) 

with a similar boundary condition on z = h+. Figure 1 is a sketch of the boundary 
geometry and coordinate system for this problem. 

The above is a well-posed boundary-value problem, but i t  is not the problem of 
interest for lifting surfaces. We are really interested in bodies that shed vorticity into 
a trailing wake, and hence flows that do not satisfy (2.1) everywhere. I n  general, for 
an arbitrary bluff body, the problem of specifying properties of such a rotational wake 
is difficult, and in any case not of interest in the present study. 

We now assume that the body is thin, in the sense that both h and h+ are small. 
Then any such wake will also be thin, and we may assume (2.1) to hold almost 
everywhere, i.e. everywhere except within a wake of vanishing thickness, which 
becomes a vortex sheet. This vortex sheet must have the property that there is no 
jump in pressure p across it,  where p is given by Bernoulli's equation i.e. 

if p ,  is the ambient pressure. The wake condition of zero pressure jump then must 
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hold also at  points of attachment between wake and body, this being the well-known 
Kutta condition. 

Thus if B denotes the planform of the thin body (i.e. its projection on the plane 
z = 0 ) ,  so that (2.4) holds for (x, y) E B, and if r denotes the perimeter of B,  then we 
can divide r into a leading part rL and a trailing part r,. The wake is shed from 
r,, and the Rutta condition asserts that the value o f p  given by (2.5) is continuous 
between upper and lower surfaces at all points of r,. 

The final question in problem specification concerns the distinction between rL and 
r,, i.e. the choice of two or more transition points between leading and trailing edges. 
Such transition points may be fixed a priori by the geometry of the planform B, 
especially if its tips or extremities in the y-direction are sharp points. Otherwise, the 
flow itself determines the leading-trailing transition, in such a way that (in broad 
terms) the flow mean is inward to B for all points of rL and outward from B for all 
points of r,. The actual procedure for determining transition is discussed later. 

Now if h, h f  = O(eL) and e+O, where L is an x-wise lengthscale, the net disturb- 
ance to the uniform stream vanishes almost everywhere, and we may write 

q5 = Ux+O(s). (2.6) 
The exception to (2.6) is for points within the small gap between body and ground, 
i.e. for (x, y) E B, 0 < z < h(x, y). In this gap region, V$ is not necessarily close to U ,  
since very small gaps can induce large velocities. 

However, the smallness of the gaps does tend to prevent z-wise fluid motion, and 
we can expand in a Taylor series 

#@, y, 4 = #(x, Y. 0 )  --&."[$,,(X? Y? 0)  + #y&t Y. 011 + 0(e4)7 (2.7) 

which satisfies (2.1) and (2.3), and also satisfies (2.4) if 

A(hg) ax + A ( h 9 )  aY aY = 0, 

where # = #(x, y) is used instead of #(x, y, 0). Equation (2.8) must be satisfied for 
(x, y) E B, subject to # =  UX o n r L ,  (2.9) 

#;+@ = u2 on r,. (2.10) 

Equation (2.9) matches the gap-region flow to the exterior flow (2.6) at the leading 
edge. The detailed matching (see Tuck & Bentwich 1983) involves a local entrance 
flow with a stagnation point on the lower surface of the wing, at a small O(h) distance 
from the leading edge. Equation (2.10) is a consequence of the Kutta condition, using 
(2 .5) .  

Thus the gap-flow problem reduces to a two-dimensional nonlinear mixed boundary- 
value problem on B for the elliptic partial differential equation (2.8), subject to 
boundary conditions (2.9), (2,iO) on the boundary of B. Note that, if h = constant, 
this problem has the solution 

That is, a uniform gap does not disturb the incident stream. There is only a non-trivial 
disturbance within the gap if h is non-constant. This is a conclusion subject to an 
U(E)  error ; that is, we are neglecting all velocity perturbations that tend to zero with 
the gap size. 

If the boundary r possesses slope discontinuities near its y-wise extremities, these 
will tend to pre-determine the transition point between rL and r,. Let us for the 
moment assume that this is not the case, i.e. that r is a smooth curve in a region 

$ = Ux in B. (2.11) 
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where transition is possible. Then, if /3 denotes the angle between r and the x-axis, 
(2.9) is equivalent to 

#t = U C O S ~  on r,, (2.12) 

where slat denotes differentiation tangent to r. Similarly (2.10) can be written 

@+pn = u2 on r,, (2.13) 

where a/an is the derivative normal to r in the ( x ,  y)-plane. If we demand that the 
tangential velocity #t be continuous across the transition point, this means that, a t  

(2.14) 
that point, qhn = L- U sin /3. 
Of the two possibilities (2.14), the + sign is correct. If we were to choose the - sign, 
this would mean that V# = Ui at transition; i.e. the under-vehicle velocity is exactly 
the same as Ghe uniform stream, and hence the average of under- and over-vehicle 
velocities in general possesses a non-zero inward or outward component. However, 
if we choose q5n = Usin p, (2.15) 

a t  transition, then the mean component of velocity normal to the planform is zero, 
the normal component of the above-vehicle velocity being - Usin /3. The choice (2.15) 
means that the local flow streamline a t  transition makes an angle 2/3 with the x-axis, 
so that, when averaged with the x-directed flow of the same magnitude above the 
vehicle, we obtain local mean tangency to r a t  transition. 

3. Skirts or infinite aspect ratio 
The boundary-value problem (2.8)-(2.10) can be solved completely if there is no 

dependence on y. That is, if h = h(x )  and q5 = @(x) only, and r, is the point x = 0 
while r, is at x = L,  then 

(3.1) 
Uh ( L )  

# z = - 7  

h(x)  

satisfies (2.8) and (2.10). So also does the negative of (3.1), but we reject that solution, 
since it is inward rather than outward to the trailing edge. Equation (3.1) can be 
integrated with respect to x, subject to the initial condition (2.9), to determine finally 
the velocity potential #. However, for lift computation purposes, the velocity (3.1) 
is adequate, and (2.9) is not needed. 

This two-dimensional problem has been the subject of a number of studies, e.g. 
Tuck (1978,1980,1981,1982; Tuck & Bentwich 1983). The resulting lift has an upper 
bound or maximum upward force of +pU2L per unit span, corresponding to uniform 
stagnation pressure p m  +2jpu2 beneath the gap, and attained when the trailing edge 
just touches the ground. 

On the other hand, there is no lower bound. That is, in principle, the downward 
force or negative lift can be made as large as one pleases, by allowing h(x)  to become 
vanishingly small a t  some x = xo c L,  while keeping h(L) > 0. This Venturi effect is 
the reason for the use of ground effect on racing cars. It is limited only by real-fluid 
considerations, associated with the need to prevent too-early separation in the 
effective ‘diffuser’ generated between the minimum-gap station x = xo and the 
trailing edge x = L. 

That is, of course, providing the basic two-dimensional assumption is valid. This 
means either a vehicle of impossibly high aspect ratio, i.e. very wide compared to 
its length, or else some artificial means of ensuring two-dimensionality. It is clear that, 
unless one of these requirements is met, not only will two-dimensional flow not be 
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achieved, but the benefits of negative-lift ground effect will be lost. That is, the more 
we seek to achieve (relative top,) a negative pressure, by letting h + 0 at some x = x,,, 
the greater will be the tendency for this negative pressure to suck air in sideways, 
so destroying the two-dimensional flow assumption. 

The solution achieved during the late 70s in Formula I racing was to use so-called 
skirts at the extreme sides of the vehicle. These are solid curtains, completely blocking 
the gap by extending right down to the ground; indeed, in most applications, actually 
dragging along the ground. 

The solution (3.1) applies whenever h = h(x) alone. That is, providing the car is 
designed so that every (lateral) section is identical, a two-dimensional flow is a 
possible solution. If the width is infinite, we need not worry about the sides, of course. 
But, if the width is finite, the solution must be such that there is no flow through these 
sides, i.e. with skirts parallel to the x-axis, q5y = 0 a t  the sides. Since the solution (3.1) 
has this property, it applies exactly to straight-skirted vehicles, where the gap is the 
same at all lateral stations. 

In  practice, the beneficial effect of skirts is available whether or not exact 
two-dimensionality, as defined above, is achieved. The general and obvious idea is to 
reduce the gap to a very small value a t  some intermediate point, and then allow it 
to increase (gently) toward the trailing edge. This will cause a beneficial low pressure, 
and skirts help to retain that pressure against self-destruction from the side. 

The general problem (2.8)-(2.10) can be modified to include skirts, simply by 
subdividing the contour r into portions r,, r T  and r,, instead of just rL and r T  

as before. Now F, is a ‘no-flow ’ region, subject to  the boundary condition 

q5n = O  onTs. 

That is, the boundary-value problem (2.8)-(2.10), (3.2) describes flow beneath a thin 
wing of arbitrary aspect ratio containing arbitrarily prescribed skirts along rs. In 
general, we cannot expect velocity continuity a t  the ends of r,, and indeed in theory 
an inviscid fluid moves around the sharp ends of a finite-length skirt a t  infinite 
velocity. However, there must be a particular choice of location for the skirt, such 
that the flow stays bounded in the limit as the length of the skirt tends to zero, and 
this limiting point is just the smooth transition point discussed in $2. 

Another respect in which the theory of two-dimensional ground effect differs 
markedly from three-dimensional theory, concerns extensions and projections of the 
flow, and the ensuing wake vortex sheet. If we start with a given two-dimensional 
body for 0 < x < L,  and add to that body projections of constant clearance, either 
forward or aft of the original body, the pressure on such projections is constant and 
equal to  that at x = 0 or x = L respectively. 

For example, in studying negative-lift ground effect on skirted vehicles, one need 
concern oneself (in the main) only with the expanding portion of the gap, assuming 
that the large negative pressure a t  the minimum-clearance point will be felt not only 
a t  that point, but also a t  all stations further forward, providing the clearance is 
sensibly constant a t  such stations. This is no longer the case at finite aspect ratio, 
or when skirts are removed. 

Similarly, a rearward projection a t  constant clearance has no effect on the net lift, 
since the pressure in such an extended channel must be equal to the freestream 
pressure. Indeed, such an extension is fluid-dynamically indistinguishable from the 
wake. In  the two-dimensional case (Tuck 1980) the wake is necessarily of constant 
height equal to that of the trailing edge, and the flow velocity in the wake is equal 
to the freestream value, so that the vortex-sheet strength is zero - in effect, there is 
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no vortex sheet present. However, in the three-dimensional case (and also in unsteady 
flow, see Tuck 1978) there is a vortex sheet of non-uniform strength located at a 
non-constant height and in a region of non-constant lateral extent. All these 
quantities must be determined by, in effect, solving (2.8) and (2.10) together as 
coupled equations, for unknowns $(x, y) and h(x, y). No attempt is made here to  carry 
out such computations. 

4. The linearized problem 
Since (2.1 1) applies if h = h, = constant, we may expect that, if h is nearly constant, 

the gap flow is nearly of the form (2.11), i.e. nearly undisturbed by the body. That 

(4.1) 
is, if we write 

144 
where h, 4 h,, then 

where q5, 4 Ux. Substituting into (2.8)-(2.10) and retaining only first-order terms in 

h(z, y) = h, + h,(x, y), 

&,Y) = Ux+411x,y)* 

to be solved subject to 
& = O  onr , ,  

(4.3) 

(4.4) 

The problem (4.3)-(4.5) is a linearized equivalent of (2.8)-(2.10). Equation (4.3) is 
a Poisson equation for $1, with a known right-hand side involving the specified gap 
perturbation h,(x, y). The boundary condition (4.5) is, in contrast with (2.10), 1‘ inear, 
but still somewhat awkward, in that i t  involves an ‘oblique’ derivative a/& which 
is neither normal nor tangent to  the boundary rT in general. 

It is instructive to examine the effects of linearization at the transition point 

assuming continuity of &, (4.4), (4.5) are compatible only if 

sinP$,, = 0, (4.7) 

This can be satisfied either if sin = 0 or if = 0, and it  is not easy to decide, on 
the basis of the a priori-linearized problem, which of these alternatives applies. 

However, if we return temporarily to the nonlinear problem near the transition 
point, i t  is clear that  the only alternative compatible with (2.15) is that sin p = 0. 
That is, if we substitute (4.2) into (2.15), we find that, formally, 

$,, = 2Usinp, (4.8) 

a t  transition. This is consistent with the linearization 4, -4 U x  only if (to leading 
order) sin P = 0. Physically if the local flow is required to make an angle 2p  with the 
x-axis at transition, linearization is valid only if that  angle 2p is vanishingly small. 
Note that the alternative conclusion = 0 would apply if we had chosen the sign 
in (2.14). 

That is, we have shown that, in the linearized problem, smooth leading-to- 
trailing-edge transition always occurs at a point where the planform boundary is 
locally parallel to the incident stream. Normally (e.g. for convex planforms) there 
will only be two such points and these will mark the widest points of the body, its 
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lateral extremities or wing tips. Indeed, this is what we should anticipate from 
conventional aerodynamics. Xowever, i t  is no longer true in the nonlinear case. 

The linear problem (4.3)-(4.5) was first discussed by Widnall & Barrows (1970), 
who obtained an explicit solution for a ' semi-ellipitical ' planform with a uniformly 
sloping bottom, i.e. with the right-hand side of (4.3) constant. That is, Widnall & 
Barrows' solution has a straight trailing edge x = 0, and a leading edge in x < 0, whose 
contour is a semi-ellipse. 

In  principle, i t  is possible to  obtain numerical solutions of (4.3)-(4.5) for arbitrary 
input h(x, y)  and planform I'. However, in view of the mixed nature of the boundary 
conditions (4.4), (4.5), such numerical methods will inevitably involve matrix 
inversion or iteration. Hence there seems little point in pursuing the linearized version 
of this problem further, when the full equations (2.8)-(2.10) are only slightly more 
difficult to handle numerically. 

5. Circular planforms 

for the special case when 
I n  this section we present a seminumerical solution of the full problem (2.8)-(2.10), 

h(x, y) = hoe-lkX, (5.1) 

for some constants ho, k, and when r is the circle 

x2+ y2 = a2. 

Although circular planforms and exponential clearances are here chosen for analytical 
convenience, the results are not untypical of what would be obtained for more-practical 
geometries. 

If h is given by (5.1), then (2.8) becomes 

so that 

satisfies a Helmholtz-type equation 

V2@ = k2@. (5 .5)  

If we use polar coordinates ( r ,  0) to solve (5 .5)  by separation, we can represent the 
solution to (5.3) in the form 

for some coefficients yj to be determined, where II is the modified Bessel function of 
the first kind. 

If u = 9, and 2 5  = $o/r  are the velocity components in these coordinates, we can 
write m 
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where 
(5.10) 

(5.11) 

(5.12) 

The boundary conditions (2.9), (2.10) can now be written 

where 
(5.14) 

evaluated on r = a ,  and 8 = BT is the transition position, to be determined. For the 
moment, suppose we assume OT is known, and force (5.13) to  hold a t  a fixed set of 
N &values, 8 = Bi, i = 0, 1,2,  ..., N -  1 .  Then, if we truncate the series (5.6) etc. to 
N coefficients, (5.13) is a set of N nonlinear equations in N unknowns yj ,  
j = 0, 1,2,  ..., N -  1. 

This set can be solved by Newton iteration, i.e. replace yj by y j+ 6yj, where 

(5.15) 

The elements of the matrix in (5.15) can be evaluated explicitly from (5.14); thus 

(5.16) 

evaluated with r = a, 8 = 0,. The coefficients qhj,uj,vj given by (5.10)-(5.12) take 
especially simple forms a t  r = a ,  and, in particular, only ui involves Bessel functions, 
via the ratio I i / I j .  For fixed BT, we need merely choose a trial set of yj ,  solve the linear 
equations (5.15), and so iteratively improve y,. 

In  practice, we must also iteratively improve our knowledge of the transition point 
0 = 0,. This is most easily done by keeping track of the mean normal velocity, as 
specified by (2.15) (with /3 = 8-;R in the present case), i.e. 

U n  = u+ Uacos0, (5.17) 

while evaluating the matrix elements (5.16). So long as an < 0, we are in the 
leading-edge regime 8, < 8, < R, whereas when an > 0 we are in the trailing-edge 
regime 0 < 8, < BT. At each iteration step, we record the value of i such that an 
changes sign between 8, and 8i+1, and determine OT by linear interpolation in this 
range. 

A suitable first guess for the coefficients is that  corresponding to the linearization 
in $4. That is, if we let k+O, the solution (5.6) is dominated by the uniform stream 
$5 = Ur cos 8 only if y1 + 1 and yj+O for all j + 1.  Thus the choice y1 = 1,  yj = 0, 
j + 1 is very accurate for small k, and adequate as a starting point for all k .  In  practice, 
no more than 5 iterations are needed to reduce E,, below Values of N up to 20 
were tried, but in fact N = 10 is adequate for 2-3-figure accuracy. For example, the 
early coefficients y1,yz,y3 do not change by more than 0.001 beyond N = 10, and 

(8, < 8, < n),} %=? ayj 2uu,+2vvj (0 < 8, < oT), 
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I I I -  I I I 1  
0.6 0.5 0.4 0.3 0.2 0.1 0 

FIGURE 2.  Streamlines (solid) and constant-pressure contours (dashed) for a wing of circular 
planform. Ground clearance is proportional to exp( - 2 k r ) ,  with ka = 0.5, i.e. positive angle of 
attack. Leading-edge to  trailing-edge transition occurs a t  the point T.  

-1.8 -1.4 -1.0 -0.6 -0.2 0 +0.05 +0.1 0 

FIGURE 3. Same as figure 2, with ka = -0.5, i.e. negative angle of attack. 

the coefficients ylo,  yI1 etc. are smaller than 0.0002. Similarly, final values of &, of 
the maximum pressure, and of the net lift force vary by less than 0.1 yo beyond N = 10. 

Figures 2 and 3 show streamlines (solid) and constant pressure contours (dashed) 
for two highly nonlinear cases, ka = +0.5 and ka = -0.5 respectively. The contrac- 
tion ratio h(a)/h( -a)  takes the value exp (4ka)  = 7.4  in figure 2 ,  and its reciprocal in 
figure 3. 

Thus figure 2 corresponds to positive angle of attack, with positive pressures and 
a net upward lift force. Transition is a t  ~9~ = 1 0 7 O ,  forward of the lateral extremity. 
The positive pressure tends to drive some fluid outward sideways. Recall that  the 
flow shown beneath the body is accompanied by a wake, whose properties we are not 
attempting to compute, but which will in some sense represent a continuation of the 
streamlines shown. I n  the nonlinear case, there is no reason to believe that the wake 
will have edges parallel to the uniform stream, and there is a strong indication from 
figure 2 that, in the case of positive angle of attack, it will spread out behind the body. 

I n  figure 3 the effective angle of attack is negative, and quite large negative 
pressures are induced a t  the narrowest point near the extreme leading edge. However, 
there are (small) positive pressures in the rearward quarter. Transition is at 7 2 O ,  aft 
of the lateral extremity. Streamlines are generally inward from the sides, indicating 
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--11oo Transition 

ka - 
-70" 

83 

Llft 

-- -0.4 

FIGURE 4. Plots as functions of ka, of the leading-edge to trailing-edge transition angle, the 
centre-of-pressure location, and the net lift coefficient. 

suction of fluid by the negative pressures. Because of this, the actual values of the 
negative pressure are not nearly as great as would occur in a two-dimensional flow 
with a similar clearance distribution. For example, a rectangular skirted body with 
the same h(x)  would produce a minimum pressure coefficient of 1 - e4 = - 54 instead 
of the value - 2  achieved here. 

Figure 4 shows various output quantities as a function of k .  The net lift force and 
moment are computed by numerical pressure integration. Results for small lkl vary 
linearly with k ,  and have been checked using the methods of $4. This is equivalent 
to a small-ka approximation to the equations used in the present section, with Bessel 
functions replaced by appropriate powers of kr,  the boundary conditions (5.13) 
linearized, and 0, = in. All coefficients yj tend to zero to leading order, except 
y1 + Ua. The linearized lift is then proportional to the first correction y1 - Ua to this 
coefficient, and we find that the lift coefficient (force/+pVna2) varies as 0.727ka, and 
is centred a t  x la  = - 0.390. The linear variation of lift with ka persists substantially 
out to ka = f0 .5 ,  in spite of the nonlinear character of the flows depicted in figures 
2 and 3.  
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